Big Ten Academic Alliance

Geoportal

  • About
  • Collection Stories
  • Help
  • Feedback

View Metadata

  • ISO 19139

Cropland Data Layer: Wisconsin, 2019

  • Identification Information
  • Spatial Reference Information
  • Data Quality Information
  • Distribution Information
  • Content Information
  • Spatial Representation Information
  • Metadata Reference Information

Identification Information

Citation
Title
Cropland Data Layer: Wisconsin, 2019
Originator
U.S. Department of Agriculture
Publisher
USDA-NASS
Place of Publication
Washington , District of Columbia , US
Publication Date
2020-02-03
Edition
2019
Geospatial Data Presentation Form
mapDigital
Collection Title
Statewide
Other Citation Details
30m resolution USDA, National Agricultural Statistics Service, 2019 Wisconsin Cropland Data Layer: CLASSIFICATION INPUTS: DEIMOS-1 DATE 20190504 SCENE IDENTIFIER E45 DEIMOS-1 DATE 20190515 SCENE IDENTIFIER EAB DEIMOS-1 DATE 20190525 SCENE IDENTIFIER EFC DEIMOS-1 DATE 20190601 SCENE IDENTIFIER F36 DEIMOS-1 DATE 20190604 SCENE IDENTIFIER F56 DEIMOS-1 DATE 20190608 SCENE IDENTIFIER F80 DEIMOS-1 DATE 20190611 SCENE IDENTIFIER F9D DEIMOS-1 DATE 20190621 SCENE IDENTIFIER 006 DEIMOS-1 DATE 20190629 SCENE IDENTIFIER 05D DEIMOS-1 DATE 20190712 SCENE IDENTIFIER 0CF DEIMOS-1 DATE 20190719 SCENE IDENTIFIER 10A RESOURCESAT-2 LISS-3 20180909 PATH 273 RESOURCESAT-2 LISS-3 20181017 PATH 271 RESOURCESAT-2 LISS-3 20181018 PATH 276 RESOURCESAT-2 LISS-3 20190423 PATH 274 RESOURCESAT-2 LISS-3 20190507 PATH 272 RESOURCESAT-2 LISS-3 20190531 PATH 272 RESOURCESAT-2 LISS-3 20190629 PATH 273 RESOURCESAT-2 LISS-3 20190709 PATH 275 RESOURCESAT-2 LISS-3 20190714 PATH 276 RESOURCESAT-2 LISS-3 20190723 PATH 273 RESOURCESAT-2 LISS-3 20190801 PATH 270 RESOURCESAT-2 LISS-3 20190802 PATH 275 RESOURCESAT-2 LISS-3 20190806 PATH 271 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20180909 PATH 024 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20180916 PATH 025 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20181004 PATH 023 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20181018 PATH 025 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20190421 PATH 024 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20190426 PATH 027 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20190428 PATH 025 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20190606 PATH 026 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20190608 PATH 024 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20190613 PATH 027 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20190710 PATH 024 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20190719 PATH 023 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20190724 PATH 026 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20190731 PATH 027 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20190804 PATH 023 LANDSAT 8 OLI/TIRS REAL-TIME DATE 20190827 PATH 024 USGS, NATIONAL ELEVATION DATASET USGS, NATIONAL LAND COVER DATABASE 2016 IMPERVIOUSNESS USGS, NATIONAL LAND COVER DATABASE 2011 TREE CANOPY USDA, NASS CROPLAND DATA LAYERS 2008-2018 SENTINEL-2A DATE 20180923 RELATIVE ORBIT NUMBER 126 SENTINEL-2A DATE 20181016 RELATIVE ORBIT NUMBER 026 SENTINEL-2A DATE 20181115 RELATIVE ORBIT NUMBER 026 SENTINEL-2A DATE 20181118 RELATIVE ORBIT NUMBER 069 SENTINEL-2A DATE 20190424 RELATIVE ORBIT NUMBER 026 SENTINEL-2A DATE 20190504 RELATIVE ORBIT NUMBER 026 SENTINEL-2A DATE 20190507 RELATIVE ORBIT NUMBER 069 SENTINEL-2A DATE 20190531 RELATIVE ORBIT NUMBER 126 SENTINEL-2A DATE 20190606 RELATIVE ORBIT NUMBER 069 SENTINEL-2A DATE 20190613 RELATIVE ORBIT NUMBER 026 SENTINEL-2A DATE 20190703 RELATIVE ORBIT NUMBER 026 SENTINEL-2A DATE 20190706 RELATIVE ORBIT NUMBER 069 SENTINEL-2A DATE 20190723 RELATIVE ORBIT NUMBER 026 SENTINEL-2A DATE 20190802 RELATIVE ORBIT NUMBER 026 SENTINEL-2A DATE 20190809 RELATIVE ORBIT NUMBER 126 SENTINEL-2A DATE 20190819 RELATIVE ORBIT NUMBER 126 SENTINEL-2A DATE 20190918 RELATIVE ORBIT NUMBER 126 SENTINEL-2B DATE 20181004 RELATIVE ORBIT NUMBER 069 SENTINEL-2B DATE 20181018 RELATIVE ORBIT NUMBER 126 SENTINEL-2B DATE 20181024 RELATIVE ORBIT NUMBER 069 SENTINEL-2B DATE 20181031 RELATIVE ORBIT NUMBER 026 SENTINEL-2B DATE 20190419 RELATIVE ORBIT NUMBER 026 SENTINEL-2B DATE 20190608 RELATIVE ORBIT NUMBER 026 SENTINEL-2B DATE 20190625 RELATIVE ORBIT NUMBER 126 SENTINEL-2B DATE 20190708 RELATIVE ORBIT NUMBER 026 SENTINEL-2B DATE 20190711 RELATIVE ORBIT NUMBER 069 SENTINEL-2B DATE 20190725 RELATIVE ORBIT NUMBER 126 SENTINEL-2B DATE 20190731 RELATIVE ORBIT NUMBER 069 SENTINEL-2B DATE 20190804 RELATIVE ORBIT NUMBER 126 SENTINEL-2B DATE 20190807 RELATIVE ORBIT NUMBER 026 SENTINEL-2B DATE 20190827 RELATIVE ORBIT NUMBER 026 SENTINEL-2B DATE 20190830 RELATIVE ORBIT NUMBER 069 SENTINEL-2B DATE 20190916 RELATIVE ORBIT NUMBER 026 UK-DMC-2 DATE 20190419 SCENE IDENTIFIER C47 UK-DMC-2 DATE 20190420 SCENE IDENTIFIER C4E UK-DMC-2 DATE 20190426 SCENE IDENTIFIER C7F UK-DMC-2 DATE 20190503 SCENE IDENTIFIER CB4 UK-DMC-2 DATE 20190513 SCENE IDENTIFIER D06 UK-DMC-2 DATE 20190526 SCENE IDENTIFIER D7E UK-DMC-2 DATE 20190602 SCENE IDENTIFIER DC1 UK-DMC-2 DATE 20190622 SCENE IDENTIFIER E84 UK-DMC-2 DATE 20190629 SCENE IDENTIFIER EC3 TRAINING AND VALIDATION: USDA, FARM SERVICE AGENCY 2019 COMMON LAND UNIT DATA USGS, NATIONAL LAND COVER DATABASE 2016
Abstract
The USDA, NASS Cropland Data Layer (CDL) is a raster, geo-referenced, crop-specific land cover data layer. The 2019 CDL has a ground resolution of 30 meters. The CDL is produced using satellite imagery from the Landsat 8 OLI/TIRS sensor, the Disaster Monitoring Constellation (DMC) DEIMOS-1 and UK2, the ISRO ResourceSat-2 LISS-3, and the ESA SENTINEL-2 sensors collected during the current growing season.Some CDL states used additional satellite imagery and ancillary inputs to supplement and improve the classification. These additional sources can include the United States Geological Survey (USGS) National Elevation Dataset (NED) and the imperviousness data layer from the USGS National Land Cover Database 2016 (NLCD 2016) and the tree canopy data layer from the NLCD 2011.Agricultural training and validation data are derived from the Farm Service Agency (FSA) Common Land Unit (CLU) Program. The most current version of the NLCD is used as non-agricultural training and validation data.Please refer to the 'Supplemental_Information' Section of this metadata file for a complete list of all imagery, ancillary data, and training/validation data used to generate this state's CDL.The strength and emphasis of the CDL is agricultural land cover. Please note that no farmer reported data are derivable from the Cropland Data Layer.
Purpose
The purpose of the Cropland Data Layer Program is to use satellite imagery to (1) provide planted acreage estimates to the Agricultural Statistics Board for the state's major commodities and (2) produce digital, crop-specific, categorized geo-referenced output products.
Supplemental Information
SPECIAL NOTE FOR THE 2019 CDL PRODUCTS: Traditionally the CDL uses FSA CLU data for agricultural training with a 30 meter inward buffer applied. The inward buffering removes spectrally mixed field edge pixels from the land cover classifier. Starting with the 2019 CDL products, the inward buffer has been changed from 30 meters to 15 meters. The result is a noticeable increase in crop identification at field borders which impacts the CDL, the Cultivated Layer, and Crop Frequency Layers. NOTE: The final extent of the CDL is clipped to the state boundary even though the raw input data may encompass a larger area.
Temporal Extent
Time Instant
2019-12-31T00:00:00
Bounding Box
West
-93.026493
East
-86.599174
North
47.154595
South
42.320983
ISO Topic Category
farming
Place Keyword
Wisconsin
Place Keyword Thesaurus
Theme Keyword
Agriculture
Theme Keyword Thesaurus
LCSH
Resource Constraints
Use Limitation
Although this data is being distributed by the University of Wisconsin-Madison, no warranty expressed or implied is made by the University as to the accuracy of the data and related materials. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the University in the use of this data, or related materials.[The USDA, NASS Cropland Data Layer is provided to the public as is and is considered public domain and free to redistribute. The USDA, NASS does not warrant any conclusions drawn from these data. If the user does not have software capable of viewing GEOTIF (.tif) or ERDAS Imagine (.img) file formats then we suggest using the CropScape website . . ]
Maintenance and Update Frequency
annually
Language
eng
Credit
USDA-NASS
Point of Contact
Contact
U.S. Department of Agriculture
Point of Contact
Contact
USDA-NASS
Delivery Point
1400 Independence Avenue, SW, Room 5038-S
City
Washington
Administrative Area
District of Columbia
Postal Code
20250-9410
Country
US
Email
HQ_RDD_GIB@nass.usda.gov
Phone
800-727-9540

Spatial Reference Information

Reference System Identifier
Code
5070
Code Space
EPSG
Version
7.4.6(10.1.0)

Data Quality Information

Quantitative Attribute Accuracy Report
Lineage
Process Step
Description
Provided access to archived data at UW-Madison
Process Date
2020-02-26T00:00:00

Distribution Information

Format Name
Raster Dataset
Format Version
TIF
Distributor
UW-Madison
Online Access
https://web.s3.wisc.edu/rml-gisdata/WI_CDL_2019.zip
Protocol
WWW:DOWNLOAD-1.0-http--download
Name
GeoData@Wisconsin
Function
download

Content Information

Content Type
thematicClassification

Spatial Representation Information

Raster
Number of Dimensions
2
Column Count
15867
Row Count
16960
Cell Geometry Type
area
Corner Points
Point
242535.000000 2180055.000000
Point
242535.000000 2688855.000000
Point
718545.000000 2688855.000000
Point
718545.000000 2180055.000000
Center Point
480540.000000 2434455.000000

Metadata Reference Information

Hierarchy Level
dataset
Metadata File Identifier
3BADC89A-60EA-4935-B17C-3FB39E864629
Metadata Point of Contact
Name
U.S. Department of Agriculture
Metadata Date Stamp
2020-02-27
Metadata Standard Name
ISO 19139 Geographic Information - Metadata - Implementation Specification
Metadata Standard Version
2007
Character Set
utf8
Download
Big Ten Academic Alliance Logo

About & Help

  • About Us
  • Program Updates
  • Contact Us
  • Help Guides
  • Tutorials

Policies

  • Harmful Language Statement
  • Privacy Statement
  • Collection Development

Sponsors

  • Big Ten Academic Alliance
  • BTAA Geospatial Information Network
  • University of Minnesota Libraries

BTAA Geoportal Collection Stories

  • Applying Deep Learning Models to BTAA GeoPortal Collections • July 1, 2025
  • Leveraging 3D GIS to promotion and discoveries map collection • May 8, 2025
  • Building the Historical Maps of New Jersey website • April 3, 2025
  • Discovery of Geological Maps in the BTAA Geoportal • March 4, 2025
  • Spanker’s Branch to Campus River • January 16, 2025

More Collection Stories

BTAA Member Libraries

  • Indiana University
  • Michigan State University
  • Northwestern University
  • Pennsylvania State University
  • Purdue University
  • Rutgers University
  • The Ohio State University
  • University of Chicago
  • University of Illinois
  • University of Iowa
  • University of Maryland
  • University of Michigan
  • University of Minnesota
  • University of Nebraska-Lincoln
  • University of Oregon
  • University of Washington
  • University of Wisconsin-Madison